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Abstract
This work is dedicated to the study of the noncommutative Gross–Neveu model.
As is known, in the canonical Weyl–Moyal approach the model is inconsistent,
basically due to the separation of the amplitudes into planar and nonplanar
parts. We prove that if instead a coherent basis representation is used, the
model becomes renormalizable and free of the aforementioned difficulty. We
also show that, although the coherent state procedure breaks Lorentz symmetry
in odd dimensions, in the Gross–Neveu model, this breaking can be kept under
control by assuming the noncommutativity parameters to be small enough. We
also make some remarks on ordering prescriptions used in the literature.

PACS numbers: 11.10.Nx, 11.10.Gh, 11.10.Kk

1. Introduction

In recent years much effort has been devoted to the study of noncommutative field theories
[1]. One important outcome of these investigations is that, for the case of canonical
noncommutativity, the use of the Weyl–Moyal correspondence leads to strong nonlocal
effects, which put severe restrictions on the form of the allowed models. In fact, it has
been found that part of the ultraviolet divergences of the commutative models are transmuted
into infrared ones. Whenever they are stronger than logarithmic, these divergences, called
ultraviolet/infrared (UV/IR) singularities, are very dangerous, leading to a breakdown of
most of the perturbative schemes. Even when the UV/IR infrared singularities are only
logarithmic, the mere separation of contributions into planar (UV divergent) and nonplanar
(UV finite but divergent whenever the external momenta tend to zero) parts, typical of the
Weyl–Moyal method, may lead to inconsistencies in the renormalization program so that the
model under scrutiny becomes nonrenormalizable. Examples where such situation occurs are
provided by the four-dimensional O(N) linear sigma model with N > 2 [2] and the 1/N

expansion of the O(N) Gross–Neveu (GN) model in 2 + 1 dimensions [3, 4]. In both cases
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the feature responsible for the failure of the renormalization procedure is the existence of a
parameter whose renormalization in the commutative setting secures the elimination of the
UV divergence of two different structures. For the linear sigma model it is the pion mass
counterterm which enforces both the vanishing of the pion mass and the finiteness of the gap
equation. In the GN model the coupling constant renormalization plays a double role enforcing
the gap equation and also eliminating the UV divergence in the two-point vertex function
of the auxiliary field introduced to implement the 1/N expansion. It was proved that enlarging
the models, specifically, the gauging of the linear sigma model and the supersymmetrization
of the GN model, furnished consistent theories without the aforementioned difficulty.

In the present work we will investigate an alternative procedure to introduce
noncommutativity in field theories aiming at the construction of a consistent GN model
without the necessity of supersymmetrization. More precisely, we will analyse a coherent
state representation [5], which is constructed such that only the unperturbed propagators are
affected by the noncommutativity. As a consequence, Feynman diagrams are not separated
into planar and nonplanar parts and, in general, all amplitudes are ultraviolet finite (some
recent applications of this method are in [6]). We stress that this formalism is unrelated to
the ordering prescriptions inherent to the Weyl correspondence in canonical noncommutative
field theories, a point which we clarify in the appendix.

It has been also argued that, under some simple assumptions on the noncommutativity
matrix, Lorentz preserving noncommutative models may be constructed on even spacetime
dimensions, using coherent states. In our case, because the spacetime dimension is odd,
Lorentz symmetry is being explicitly broken. However, we may envisage the possibility that
the breaking occurs only at very high energies so that its net effect is strongly suppressed at
our energy scale. We will show that this is indeed the case in this model. One may entertain
the hope that the same mechanism may work for more realistic field theories operating in
four-dimensional spacetime [7].

This work is organized as follows. The commutative Gross–Neveu model and its canonical
noncommutative counterpart are described in section 2. Using a coherent state approach, in
section 3, we show that the problems in the canonical approach are circumvented. In this
context we describe the main properties of the model and discuss the problem of Lorentz
violations. Our conclusions are contained in section 4. The appendix contains an analysis of
the various ordering prescriptions used in the canonical noncommutative field theories, and
how they may relate (or not) to our approach.

2. The Gross–Neveu model and the canonical noncommutativity

The commutative Gross–Neveu model is specified by the Lagrangian density

L = i

2
ψ �∂ψ − σ

2
(ψψ) − N

4g
σ 2, (1)

where ψi, i = 1, . . . , N , are two-component Majorana fields and σ is an auxiliary field (note
that the replacement of the σ field’s equation of motion in equation (1) leads to the usual
four-fermion interaction). At the quantum level, it is convenient to replace σ by σ + M where
M is the vacuum expectation value of the original σ . The new Lagrangian is

L = i

2
ψ �∂ψ − M

2
ψψ − σ

2
(ψψ) − N

4g
σ 2 − N

2g
Mσ. (2)

Observe now that the coupling constant renormalization, 1/g → 1/gR + �, where gR is the
renormalized coupling constant, equally affects the tadpole and the two-point vertex function
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of the auxiliary field. In fact, since the σ field now has zero vacuum expectation value, the
gap equation

M

2g
− i

∫
dDk

(2π)D

M

k2 − M2
= 0, (3)

must be obeyed. Now, the computation of the two-point vertex function of the σ field leads to

�(2)
σ = − iN

2g
− N

∫
dDk

(2π)D

k · (k + p) + M2

(k2 − M2)[(k + p)2 − M2]

= − iN

2g
+ N

∫
dDk

(2π)D

1

k2 − M2

+
(p2 − 4M2)N

2

∫
dDk

(2π)D

1

(k2 − M2)[(k + p)2 − M2]
, (4)

which shows that the replacement 1/g → 1/gR + � eliminates divergences both in the gap
equation and in the propagator for the auxiliary field.

We now consider the extension of the above model to a noncommutative space
characterized by the commutation relation between coordinate operators

[q̂µ, q̂ν] = i�µν (5)

and set �i0 = 0 to keep time local, thus avoiding unitarity/causality problems [8]. We also
adopt the notation �ij = iεij� where εij is the Levi-Cività anti-symmetrical symbol.

In the Weyl–Moyal approach to noncommutative field theories, the pointwise
multiplication of fields is replaced by the Moyal product between them. For a given model
the propagators are the same as in the corresponding commutative model but the vertices
are modified by trigonometric factors. As a consequence, in our situation the gap equation
remains unchanged whereas the factor cos2(kµpν�µν) appears in the integral in the first line
of equation (4), thus leading to

�(2)
σ = − iN

2g
+

N

2

∫
dDk

(2π)D

1

k2 − M2
+

(p2 − 4M2)N

4

∫
dDk

(2π)D

1

(k2 − M2)[(k + p)2 − M2]

+
N

2

∫
dDk

(2π)D

cos(2k ∧ p)

k2 − M2
+

(p2 − 4M2)N

4

×
∫

dDk

(2π)D

cos(2k ∧ p)

(k2 − M2)[(k + p)2 − M2]
. (6)

The integrals in the second line of the above equation are finite due to the trigonometric factor
cos(2k ∧ p), however, the counterterm �, which is fixed by the gap equation, does no longer
eliminate the divergent integral in the first line, because of the factor 1/2 appearing there. The
model has become nonrenormalizable!

3. The noncommutative Gross–Neveu model using coherent states

Faced with the problem outlined in the previous section, one could try to find whether
alternative approaches to spacetime noncommutativity could be used to modify the Gross–
Neveu model without spoiling the delicate equilibrium between the renormalization of the
gap equation and the auxiliary field propagator. One possibility is to use the coherent state
approach proposed in [5]. In this case, the commutation relation (5) between the coordinates
q̂1 and q̂2 implies that the complex variable ẑ = q̂1+iq̂2√

2
and its complex conjugate ẑ† satisfy

[ẑ, ẑ†] = �. (7)
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Defining a ‘vacuum’ state through

ẑ|0〉 = 0 〈0|ẑ† = 0, (8)

we may construct eigenstates of the ‘number’ operator ẑ† ẑ
�

by applying powers of the ‘creation’
operator ẑ† to the vacuum,

ẑ†ẑ

�
(ẑ†)n|0〉 = n(ẑ†)n|0〉. (9)

Coherent states, which are eigenstates of the annihilation operator ẑ, i.e., ẑ|α〉 = α|α〉, are
given by

|α〉 = exp
(− 1

2 |α|2) exp(αẑ†)|0〉. (10)

Introducing commutative coordinates by α = x + iy, with each classical field f (x) the Fourier
representation

�̂(q̂) =
∫

d3k

(2π)3
e−ikq̂ ψ̃(k), (11)

where ψ̃(k) denotes the Fourier transform of f (x), associates a field operator �̂(q̂). The
expectation value of this operator defines a classical field

ψ(x) = 〈α|�̂(q̂)|α〉 =
∫

d3k

(2π)3
e−ikx− 1

4 �|�k|2ψ̃(k). (12)

The above expression defines the coherent representation for the classical field f (x). If
f (x) is a quantized free scalar field the propagator for the coherent field ψ(x) is given by

�F (x − y) ≡ 〈0|T ψ(x)ψ(y)|0〉
=

∫
d3k1

(2π)3

d3k2

(2π)3
e−ik1x−ik2y e− 1

4 �(|�k1|2+|�k2|2)(2π)3δ3(k1 + k2)
i

k2
1 − m2

=
∫

d3k

(2π)3
e−ik(x−y) i

k2 − m2
e− 1

2 �|�k|2 . (13)

In the following we are going to formulate interacting field theories as the quantum
versions of the classical fields defined above. In a more precise term, the Lagrangian density
for a self-interacting field ψ reads

L(x) = ψ(x) e− �
2

�∇2Oψ(x) + Lint(x), (14)

where O = −(∂µ∂µ + m2) or O = (i�∂ − M) for scalar or fermionic fields, respectively. The
interacting Lagrangian density Lint(x) is a polynomial in the basic field and its derivatives.
Note that the extra nonlocal factor in the free part of the Lagrangian was devised so as to
reproduce the result (13). However, one chooses the interacting Lagrangian as some local
product of the basic field ψ(x).

In the case of the Gross–Neveu model each field is replaced by its corresponding field
representative, using the correspondence in equation (11), so that the interaction vertices look
the same as in the commutative situation. The computation of the gap equation now leads to

1

2g
− i

∫
d3k

(2π)3

1

k2 − M2
e− 1

2 �|�k|2 = 0. (15)

and we obtain

1

g
= e

�
2 M2

2
√

2π�
Erfc

[
M

√
�

2

]
= 1

2
√

2π�
− M

2π
+ O(�) (16)
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where Erfc[z] = 2√
π

∫ ∞
z

e−t2
dt denotes the complementary error function and the last equality

indicates the leading behaviour of the left-hand side for small �. The gap equation (15) is
finite for non-zero �, and can be made regular in the � → 0 limit by means of a coupling
constant renormalization 1

g
→ 1

gR
− 1

2
√

2π�
.

Let us now consider the propagator for the auxiliary field σ , �σ = −[
�(2)

σ

]−1
, where

�(2)
σ (p) = iN

2g
e

�
2 |�p|2 − 
σ(p) (17)

and


σ(p) = −N

∫
d3k

(2π)3

k · (k + p) + M2

(k2 − M2)[(k + p)2 − M2]
e− �

2 |�k|2 e− �
2 |�k+�p|2

= −N

∫
d3k

(2π)3

e− �
2 |�k|2 e− �

2 |�k+�p|2

k2 − M2

+
(p2 − 4M2)N

2

∫
d3k

(2π)3

e− �
2 |�k|2 e− �

2 |�k+�p|2

(k2 − M2)[(k + p)2 − M2]
. (18)

Note that all integrals are finite, the integrands being exponentially damped as the loop
momenta increase. In this formalism, the noncommutativity of spacetime manifests itself
in the appearance of an effective regularization of the loop integrals. It must be stressed,
however, that the interpretation of (18) is not that of a regularized Feynman integral, as in
usual quantum field theory, since the ‘cutoff’ 1/� is a natural scale which is not introduced
as an intermediate step in the renormalization procedure. In this context, the scale � is in
principle small, but finite.

We may be interested in studying the commutative limit of our model; however, we
find that it is not possible to get a smooth � → 0 limit. This is so because the leading
behaviour for small � in equation (18) is different from the one in equation (16). As in
the canonical noncommutativity approach, the delicate equilibrium between the gap equation
and the auxiliary field propagator renormalizations is lost but, at least, here the problem
appears only if one insists in having a smooth � → 0 limit. Whenever the noncommutativity
parameter is kept finite, the coherent states approach is able to keep all divergences under
control. Also, despite the non-analiticity in �, there is no UV/IR mixing present in this
approach, since all integrals are regular for vanishing external momentum. With the coupling
constant renormalization previously adopted, �σ → 0 leading to a peculiar theory as � → 0.

Alternatively, one could use the coupling constant renormalization to eliminate the
divergent integral in equation (18), at the price of a 1/

√
� singularity in the gap

equation (15), implying in the vanishing of the renormalized coupling constant in the � → 0
limit (characterizing an asymptotically free model). Again, this is in contrast with the UV/IR
problem in canonical noncommutative theories, which threatens the renormalization program
because of the blow up of higher order quantum corrections [9].

We turn our attention now to the ψ field two-point function, whose leading correction is
given by


(p) =
∫

d3k

(2π)3

� k+ �p + M

(k + p)2 − M2
�σ(k) e− �

2 |�k+�p|2 . (19)

This expression is clearly well defined as far as � �= 0. Nonetheless, it linearly diverges as
� → 0 so that, to get a smooth limit, we can renormalize the model by imposing that the ψ
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field propagator satisfies

[�ψ(p)]−1p→0≈ − i( �p − m) + O(p2). (20)

Another aspect that raises concern is the Lorentz violation (LV) embodied in the
commutation relation (5). Indeed, several authors have pointed out the difficulties in
conciliating the LV induced in canonical noncommutative field theories with the known
experimental constraints [7, 10, 11], and this has motivated the search for Lorentz-preserving
noncommutative models [12].

As far as the coherent state approach is concerned, it was claimed that in even-dimensional
spacetime it is possible to avoid the LV by a clever choice of the noncommutativity matrix
�µν [5]. In opposition to this result, in odd spacetime dimensions as is our case, the use of
the coherent state basis inevitably leads to a LV. However, one may argue that, if the Green
functions of the basic field ψ can be made analytical in �, the breaking is necessarily small
for small �. We can explicitly check this for the two-point function in equation (19).

From a theoretical standpoint, the parameter

ξ [�(p)] =
[(

∂2

∂(p0)2
+

∂2

∂(p1)2

)
�(p)

]
p=0

, (21)

suggested in [11] was used to measure the LV in the scalar amplitude �(p). That ξ is an
adequate measure follows from the fact that it always vanishes if �(p) is Lorentz invariant,
while ξ differs from zero in the Lorentz-violating case (ξ corresponds to a Lorentz-violating
correction to the dispersion relation of the scalar particle).

As the basic field of the Gross–Neveu model is a spinor, some modification is necessary
and we propose the use of

χ [
(p)] =
[(

∂

∂(p0)
+

1

2

2∑
i=1

γi

∂

∂(pi)

)

(p)

]
p=0

, (22)

as a measure of the LV in the fermion self-energy 
(p). One can check that χ = 0 in a
Lorentz invariant theory. By applying this differential operator to (19) we obtain

χ = χ(0) + �χ(1), (23)

where

χ(0) = −2
∫

d3k

(2π)3

(
γ 0k0 +

1

2

2∑
i=1

γ iki

)
� k + M

(k2 − M2)2
�σ(k) e− �

2 |�k2| (24)

and

χ(1) = 1

2

∫
d3k

(2π)3

(
2∑

i=1

γ iki

)
� k + M

k2 − M2
�σ(k) e− �

2 |�k2|. (25)

Habitually, we conjecture that � is very small, being of the order of two powers of the
Planck length. From this perspective, χ(1) is a very small effect of the LV, but the presence of
the first term, χ(0), may appear troublesome at first sight. Such worries are unfounded since,
to enforce the renormalization condition (20), one has to replace 
(p) by


R(p) = 
(p) − 
(0) − pµ

[
∂

∂(pµ)

(p)

]
p=0

(26)
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and it is easily found that χ [
R(p)] = 0 so that a large Lorentz violation does not appear. We
would like to stress that, in the canonical approach to noncommutativity, i.e., by use of the
Moyal product, the above procedure is not available as the planar parts of Feynman amplitudes
are in general not renormalizable. This is a clear advantage of the coherent state approach.

4. Conclusions

In this paper, we have shown that the use of a coherent states approach for the introduction
of spacetime noncommutativity avoids serious problems with the canonical noncommutative
extension of the Gross–Neveu model. In this last context, the fact that part of the original
ultraviolet divergences survive, and that a single coupling constant renormalization is available
to eliminate divergences in two very different structures, makes the theory non-renormalizable.
However, in the coherent states formalism, one evades such troubles, and the resulting
noncommutative Gross–Neveu model is finite and free of UV/IR mixing for non-vanishing
noncommutativity parameter �.

We have also studied the generation of Lorentz-violating corrections to the dispersion
relation of the model. For finite �, if we do not perform any subtraction on the Green
functions, large Lorentz violation does appear. This problem can be surmounted if we insist
that our model should have a well-behaved � → 0 limit. In this case, a renormalization
procedure must be implemented, and this takes care of the LV. Curiously, the � → 0 limit is
not the commutative Gross–Neveu model, but an asymptotically free theory.

In this work, we adopted the idea that the ‘blurring’ effect of the noncommutativity of
coordinates, which would be induced by quantum gravity [16], is completely embodied in the
Fourier transform of a single field, as in equation (12). This induces the modified propagators
that we used. As for the interaction part, we choose the simplest possibility, which is a local
product of the classical field defined by equation (12). There are certainly more complicated
choices, yet even this simple possibility has interesting implications, as our analysis of the
Gross–Neveu model indicates.
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Appendix. On the question of the ordering prescription

The canonical noncommutativity approach is based on a correspondence between classical
functions and quantum operators, which fixes the form of the Moyal product used to
define noncommutative models. This correspondence is defined up to an arbitrary ordering
prescription. To take this into account, we introduce a generalized Weyl correspondence [15],

�̂(f )(q̂) ≡
∫

d2x φ(x)�(f )(q̂ − x), (A.1)

where

�(f )(q̂ − x) =
∫

d2k

(2π)2
f (k) e−ik(q̂−x), (A.2)
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and f (k) = f (k1, k2) is an arbitrary function encoding the ordering ambiguity in the relation
between functions φ(x) and operators �̂(f )(q̂). One should only requires that f nowhere
vanishes and that f (0) = 1. Popular ordering choices, such as normal ordering, Weyl
ordering and so on, can be implemented by particular choices of f (k); in particular, f (k) = 1
yields the usual Weyl correspondence.

The inverse correspondence is given by

φ(x) = Tr[�̂(f )(q̂)�(f̃ )(q̂ − x)], (A.3)

where f̃ (k) = 1/f (−k). Here, the trace is normalized as Tr(e−ikq̂ ) = (2π)2δ2(k). From this
inverse map, one defines a star-product involving n classical functions,

φ1(x) � φ2(x) � · · · � φn(x) ≡ Tr
[
�̂

(f )

1 (q̂)�̂
(f )

2 (q̂) · · · �̂(f )
n (q̂)�(f̃ )(q̂ − x)

]
=

∫ [
n∏

i=1

d2ki

(2π)2

] [∏
f (ki)

]
f̃

(
−

∑
ki

)
e− i

2

∑
i<j ki∧kj

× e−i(
∑

i ki )x φ̃1(k1)φ̃2(k2) · · · φ̃n(kn), (A.4)

where φ̃i(ki) is the Fourier transform of φi(x). Note that all integrals are two-dimensional
since there are two noncommuting coordinates q̂1 and q̂2, time being a commutative parameter
untouched by the correspondence. Thus, the spacetime integral of (A.4) can be cast as∫

d3x φ1(x) � φ2(x) � · · · � φn(x) =
∫ [

n∏
i=1

d3ki

(2π)3

]
(2π)3δ3

(∑
i

ki

)

× f (k1)f (k2) · · · f (kn) e− i
2

∑
i<j ki∧kj φ̃1(k1)φ̃2(k2) · · · φ̃n(kn). (A.5)

As becomes clear from equation (A.4), the usual Moyal product is obtained for all f ’s
satisfying f (k +q) = f (k)f (q), which obviously happens for f = 1 but not for other popular
orderings, for example the normal ordering, which is reproduced by

f (k) = exp

(
θ

2
|�k2|

)
. (A.6)

Typically, both propagators and vertices will be modified by the f factors present in (A.5), but
these modifications will disappear when one calculates the quantum corrections to the effective
action of the theory, and the result will be the same as the one in the usual Moyal-product
approach. Indeed, for the quadratic part of the action, one has∫

d3x φ1(x) � Oφ1(x) =
∫

d3k

(2π)3
f (k)f (−k)φ̃1(k1)Õφ̃2(k2), (A.7)

so that internal propagators acquire a 1/f 2 factor. However, this 1/f 2 cancels the f ’s arising
from the vertices attached to the ends of the internal lines. In this way, even if the Moyal
product is sensible to the ordering choice, the quantum theory seems to be actually independent
of the operator ordering [13, 14]. One could allow for different orderings for the free and
interactions parts of the Lagrangian [13] but, even in this case, the ‘standard’ Moyal factor
exp

(− i
2

∑
i<j ki ∧ kj

)
would be present. This is essentially different from the coherent state

approach where the damping exponentials in the free propagators are not cancelled in the
computation of general Feynman amplitudes, and the ‘standard’ Moyal factor is absent. This
happens because the noncommutativity is already embodied in the Fourier transform of a
single field, as explicitly shown in equation (12), and the interaction Lagrangian is chosen to
be a simple, local, product of fields.
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